Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity.

نویسندگان

  • D Doucet
  • M G Tyshenko
  • M J Kuiper
  • S P Graether
  • B D Sykes
  • A J Daugulis
  • P L Davies
  • V K Walker
چکیده

The spruce budworm, Choristoneura fumiferana, produces antifreeze protein (AFP) to assist in the protection of the overwintering larval stage. AFPs are thought to lower the freezing point of the hemolymph, noncolligatively, by interaction with the surface of ice crystals. Previously, we had identified a cDNA encoding a 9-kDa AFP with 10-30 times the thermal hysteresis activity, on a molar basis, than that shown by fish AFPs. To identify important residues for ice interaction and to investigate the basis for the hyperactivity of the insect AFPs, six new spruce budworm AFP cDNA isoforms were isolated and sequenced. They differ in amino-acid identity as much as 36% from the originally characterized AFP and can be divided into three classes according to the length of their 3' untranslated regions (UTRs). The new isoforms have at least five putative 'Thr-X-Thr' ice-binding motifs and three of the new isoforms encode larger, 12-kDa proteins. These appear to be a result of a 30 amino-acid insertion bearing two additional ice-binding motifs spaced 15 residues apart. Molecular modeling, based on the NMR structure of a short isoform, suggests that the insertion folds into two additional beta-helix loops with their Thr-X-Thr motifs in perfect alignment with the others. The first Thr of the motifs are often substituted by Val, Ile or Arg and a recombinantly expressed isoform with both Val and Arg substitutions, showed wild-type thermal hysteresis activity. The analysis of these AFP isoforms suggests therefore that specific substitutions at the first Thr in the ice binding motif can be tolerated, and have no discernible effect on activity, but the second Thr appears to be conserved. The second Thr is thus likely important for the dynamics of initial ice contact and interaction by these hyperactive antifreezes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of antifreeze protein gene expression in summer spruce budworm larvae.

Not surprisingly, in the spruce budworm, Choristoneura fumiferana, antifreeze protein (AFP) gene expression is most abundant in the second instar, overwintering stage. However, low level RNA and protein expression was also found in the sixth instar larvae, a summer stage. In situ hybridization further confirmed the presence of AFP mRNA in sixth instar midgut tissues. Sequencing of cDNAs corresp...

متن کامل

Spruce budworm antifreeze protein: changes in structure and dynamics at low temperature.

Antifreeze proteins (AFPs) prevent the growth of ice, and are used by some organisms that live in sub-zero environments for protection against freezing. All AFPs are thought to function by an adsorption inhibition process. In order to elucidate the ice-binding mechanism, the structures of several AFPs have been determined, and have been shown to consist of different folds. Recently, the first s...

متن کامل

Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins.

Antifreeze proteins (AFPs) designate a class of proteins that are able to bind to and inhibit the growth of macromolecular ice. These proteins have been characterized from a variety of organisms. Recently, the structures of AFPs from the spruce budworm (Choristoneura fumiferana) and the yellow mealworm (Tenebrio molitor) have been determined by NMR and X-ray crystallography. Despite nonhomologo...

متن کامل

Investigation of changes in structure and thermodynamic of spruce budworm antifreeze protein under subfreezing temperature

The aim of this theoretical work is to investigate of the changes in structure and thermodynamics of spruce budworm antifreeze protein (sbAFP) at low temperatures by using molecular dynamics simulation. The aqueous solution will form ice crystal network under the vaguely hexagonal shape at low temperature and fully represented the characteristics of hydrophobic interaction. Like ice crystal net...

متن کامل

Crystallization and preliminary X-ray crystallographic analysis of spruce budworm antifreeze protein.

Antifreeze proteins have the ability to bind to ice with high affinity and inhibit further crystal growth. The insect antifreeze protein from spruce budworm exhibits very high thermal hysteresis activity and is implicated in the protection of overwintering larvae from freezing. This protein has been crystallized in 20-25% polyethylene glycol (Mr 6000), 0.4 M NaCl, 0.1 M Tris-HCl, pH 8.5, by vap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of biochemistry

دوره 267 19  شماره 

صفحات  -

تاریخ انتشار 2000